Search results for "deviation inequalities"

showing 2 items of 2 documents

A PHASE TRANSITION FOR LARGE VALUES OF BIFURCATING AUTOREGRESSIVE MODELS

2019

We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive pr…

Statistics and Probability[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Phase transitionrandom environmentGeneral Mathematicsmedia_common.quotation_subjectmoderate deviationslimit-theoremsmarkov-chainsStatistics::Other StatisticsBranching processdeviation inequalities92D2501 natural sciencesAsymmetry010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Convergence (routing)[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Applied mathematics60C05[MATH]Mathematics [math]0101 mathematicsautoregressive process60J20lawMathematicsBranching processmedia_commonEvent (probability theory)parametersconvergenceMarkov chain010102 general mathematics[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO][MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Large deviationslarge deviations Mathematics Subject Classification (2010): 60J8060K37Autoregressive modelcellsLarge deviations theoryStatistics Probability and Uncertaintyasymmetry60F10
researchProduct

MODERATE DEVIATION PRINCIPLES FOR BIFURCATING MARKOV CHAINS: CASE OF FUNCTIONS DEPENDENT OF ONE VARIABLE

2021

The main purpose of this article is to establish moderate deviation principles for additive functionals of bifurcating Markov chains. Bifurcating Markov chains are a class of processes which are indexed by a regular binary tree. They can be seen as the models which represent the evolution of a trait along a population where each individual has two offsprings. Unlike the previous results of Bitseki, Djellout \& Guillin (2014), we consider here the case of functions which depend only on one variable. So, mainly inspired by the recent works of Bitseki \& Delmas (2020) about the central limit theorem for general additive functionals of bifurcating Markov chains, we give here a moderate deviatio…

Statistics and Probability[MATH.MATH-PR]Mathematics [math]/Probability [math.PR][MATH.MATH-PR] Mathematics [math]/Probability [math.PR]60J80Bifurcating Markov chainsbinary trees[MATH]Mathematics [math]binary trees Mathematics Subject Classification (2020): 60F10deviation inequalitiesMathematics - Probabilitymoderate deviation principles
researchProduct